History-Based Adaptive Work Distribution

نویسنده

  • Evgenij Belikov
چکیده

Exploiting parallelism of increasingly heterogeneous parallel architectures is challenging due to the complexity of parallelism management. To achieve high performance portability whilst preserving high productivity, high-level approaches to parallel programming delegate parallelism management, such as partitioning and work distribution, to the compiler and the run-time system. Random work stealing proved efficient for well-structured workloads, but neglects potentially useful context information that can be obtained through static analysis or monitoring at run time and used to improve load balancing, especially for irregular applications with highly varying thread granularity and thread creation patterns. We investigate the effectiveness of an adaptive work distribution scheme to improve load balancing for an extension of Haskell which provides a deterministic parallel programming model and supports both shared-memory and distributedmemory architectures. This scheme uses a less random work stealing that takes into account information on past stealing successes and failures. We quantify run time performance, communication overhead, and stealing success of four divide-and-conquer and data parallel applications for three different update intervals on a commodity 64-core Beowulf cluster of multi-cores. 1998 ACM Subject Classification C.1.4 Parallel Architectures, D.1.1 Applicative (Functional) Programming, D.1.3 Parallel Programming, D.3.4 Run-Time Environments, D.4.1 Scheduling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Energy Based Adaptive Pushover Analysis for Nonlinear Static Procedures

Nonlinear static procedure (NSP) is a common technique to predict seismic demands on various building structures by subjecting a monotonically increasing horizontal loading (pushover) to the structure. Therefore, the pushover analysis is an important part of each NSP. Accordingly, the current paper aims at investigating the efficiencyof various algorithms of lateral load patterns applied to the...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Analysis of Speed Control in DC Motor Drive Based on Model Reference Adaptive Control

This paper presents fuzzy and conventional performance of model reference adaptive control(MRAC) to control a DC drive. The aims of this work are achieving better match of motor speed with reference speed, decrease of noises under load changes and disturbances, and increase of system stability. The operation of nonadaptive control and the model reference of fuzzy and conventional adaptive contr...

متن کامل

Shearlet-Based Adaptive Noise Reduction in CT Images

The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014